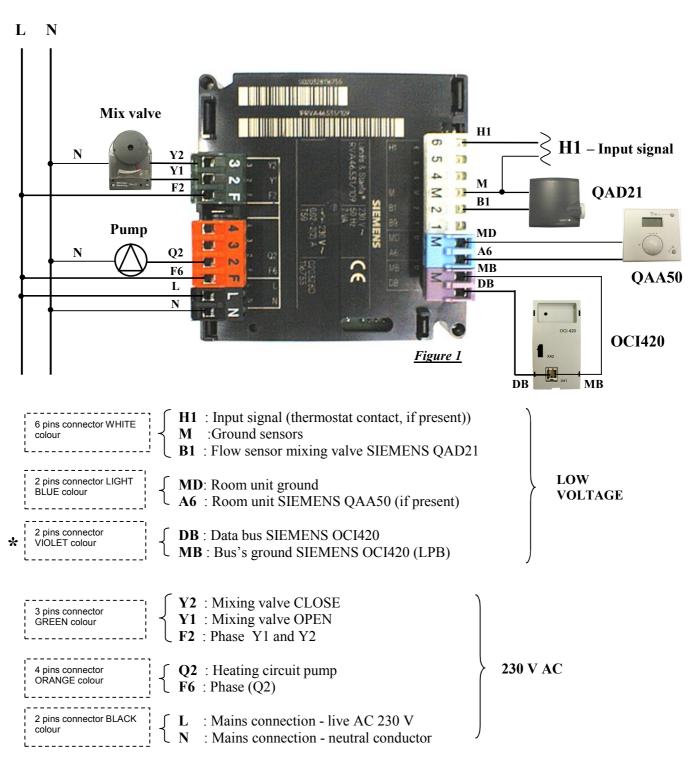


Heating Circuit ZONE Controller

RVA 46.531/109

Zonal temperature controller for control of a lowtemperature heating system, for use with condensing gas boilers

Instructions for the INSTALLER


INDEX

	Page
Electrical connections	3
Wall installation	4
Hydraulic and electrical system diagrams	6-8
Description of controller	9
Setting the parameters	10
Setting the MASTER address and clock	13
Setting the parameters for the type of room temperature control used	14
Selecting the heating curve	14
System delivery temperature minimum and maximum threshold	16
Building type	16
Setting up the LMU54 boiler electronic circuit board	16
Test description	17
LED flash functions	18
Description of MANUAL operation key	18
Indication of fault	19
Technical specifications	20

CAUTION

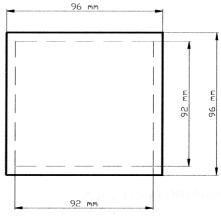
THE DIAGRAMS PROVIDED IN THIS DOCUMENTATION ARE PURELY GUIDELINE AND MUST BE CONFIRMED BY A HEATING ENGINEER'S ANALYSIS.

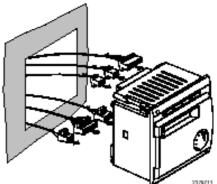
1 Electrical connections of RVA 46 controller

Nota: the outside sensor SIEMENS QAC34 must be connected directly in the gas boiler. The employment of the room thermostat connected to the input signal connector (H1), is an alternative solution of using the room unit SIEMENS QAA50.

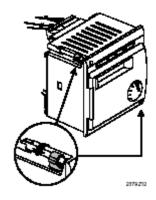
* Attention: do NOT invert the polarity

2. Wall installation of RVA 46

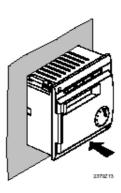

2.1 Regulations for installation


- Air circulation around the controller must be ensured, allowing the unit to emit the heat produced by it.
 - A clearance of at least 10 mm must be provided for the controller's cooling slots which are situated a the top and bottom of the housing.
 - The space should not be accessible and no objects should be placed there.
 - If the controller is enclosed in another (insulating) casing, a clearance up to 100 mm must be observed on all sides.
- ➤ The controller is designed conforming to the directives for safety class II mounted in compliance with these regulations.
- ➤ Power to the controller may be supplied only after it is completely fitted in the cut-out. If this is not observed, there is a risk of electric shock hazard near the terminals and through the cooling slots.
- ➤ The controller may not be exposed to dripping water.
- Permissible ambient temperature when mounted and when ready to operate: 0..0.50 °C.

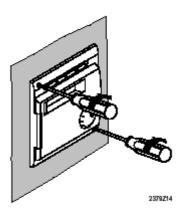
2.2 Mounting procedure


- > Turn off power supply
- The controller's mounting dimensions are 91 x 91 mm. Due to the dimensions of the front, however, the standard spacing is 96 mm.
 - The controller can be fitted in front panels of different thickness.
- > Pull the prefabricated cables through the cut-out
- ➤ Plug the connectors into the respective sockets at the rear of the controller (fig. 2 paragraph 1.1).

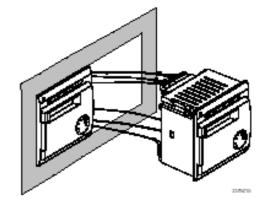
Note: The connectors are coded to make certain they cannot be mixed up.



- ➤ Check to ensure the fixing levers are turned inward.
- ➤ Check to make certain there is sufficient space between the front panel and the fixing levers.

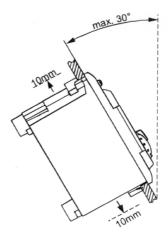

➤ Slide the controller into the panel cut-out without applying any force

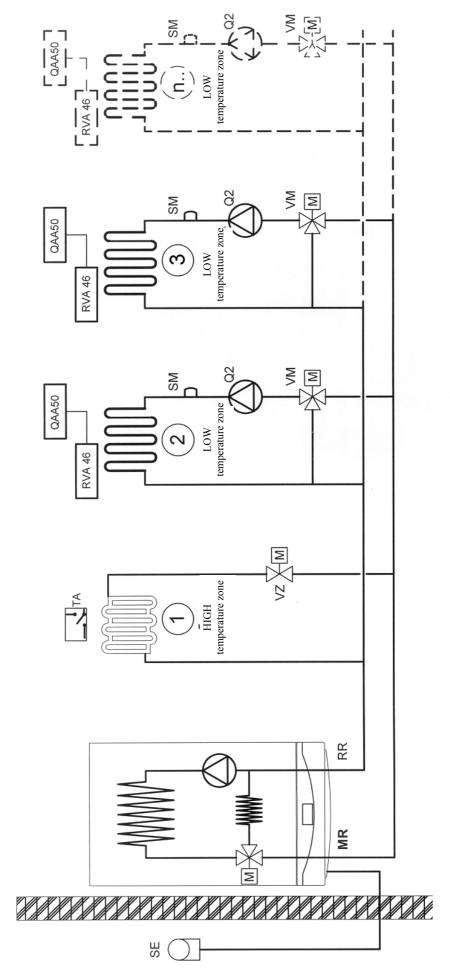
Note: do not use any tools when inserting the unit into the cutout. If it does not fit, check the size of the cutout and the position of the fixing levers.



Tighten the 2 screws on the front of the controller

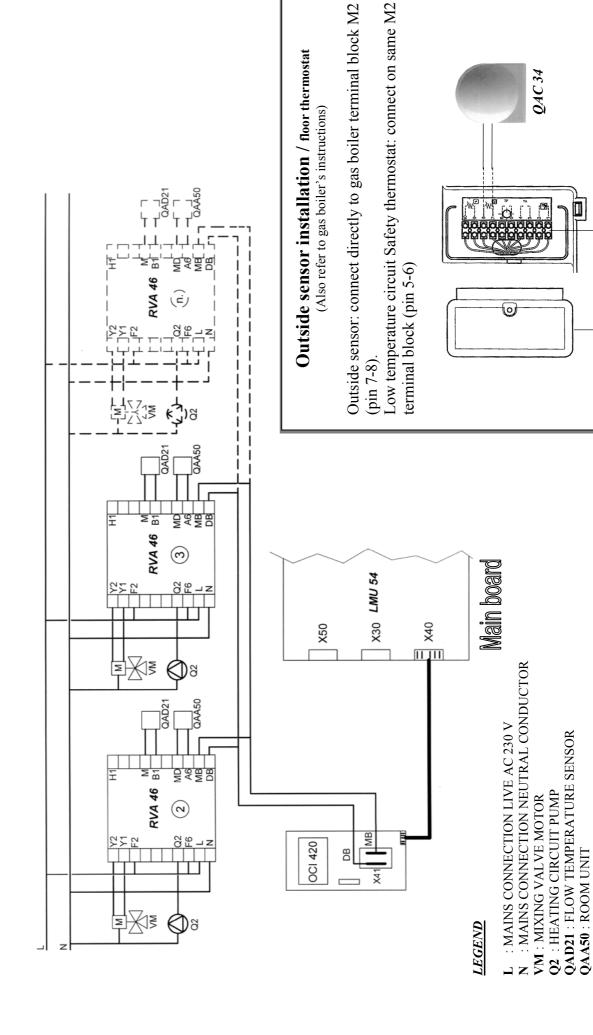
Note: tighten the screws only slightly, applying a torque of maximum 20 Ncm. When tightening the screws, the fixing levers automatically assume their correct positions.




The mechanical mounting facility makes it possible to arrange several controllers in a row in one cutout. In that case, it is merely necessary to have a wider panel cut-out.

➤ To avoid over temperatures inside the controller, the inclination may be no more than 30° and there must be a clearance of at least 10 mm above and below the cooling slots.

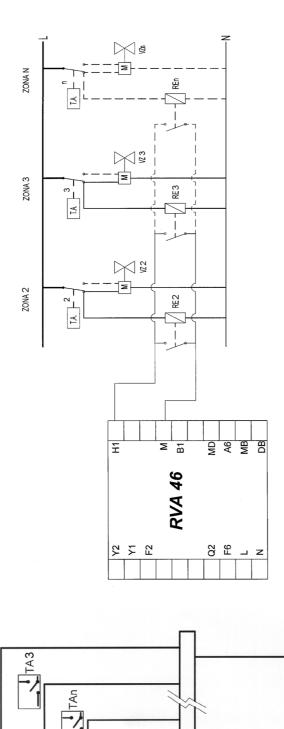
This allows the controller to emit the heat generated during operation.


LEGEND

SM: FLOW TEMPERATURE SENSOR (QAD21) Q2: HEATING CIRCUIT PUMP MR: FLOW TEMPERATURE

FA: ROOM THERMOSTAT RR: RETURN TEMPERATURE
SE: OUTSIDE SENSOR
VZ: ZONE VALVE

VM: MIXING VALVE


Electrical diagram of heating zone circuit controlled by RVA 46

Terminal board M2

Terminal board cap M2

Heating low temperature zone circuit example controlled by room thermostat TA

VZn

VZ3

LEGEND

W WA

M

RR

MR: FLOW TEMPERATURE

RR: RETURN TEMPERATURE

VM: MIXING VALVE

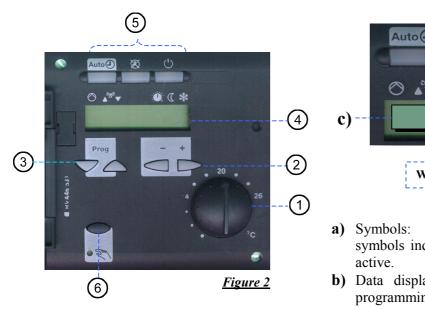
Q2: HEATING CIRCUIT PUMP VZ: VALVE ZONE

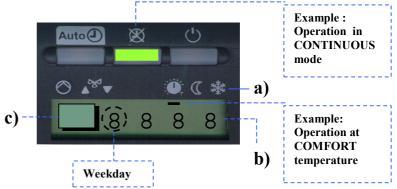
SM: FLOW TEMPERATURE SENSOR (QAD21)

TA: ROOM THERMOSTAT

BP:BYPASS RE:RELAY

: MAINS CONNECTION LIVE AC 230 V


: MAINS CONNECTION NEUTRAL CONDUCTOR : ROOM THERMOSTAT


3. Description of the RVA 46

The RVA 46 Temperature Regulator is an electronic device designed to control low-temperature zone-type heating systems.

The following components are necessary for operation of the RVA 46 Temperature Regulator.

- ➤ SIEMENS OCI 420 communications interface (see instructions supplied with the accessory itself for installation and electrical connection to the boiler);
- ➤ SIEMENS QAC 34 outdoor temperature sensor (connected to the boiler, see instructions supplied with the boiler for the electrical connection);
- ➤ SIEMENS VXP459 three-way valve and relative SIEMENS SQY 31 motor (a commercial three-way valve / motor with the same characteristics can be used);
- ➤ SIEMENS QAD 21 delivery temperature sensor for zone-type systems

- **a)** Symbols: a black dash underneath one of the symbols indicates that the corresponding function is
- **b)** Data display during normal operation or during programming.
- **c)** Display of a program line during programming.

	Description of elements	Functions
1	Room temperature knob	Room temperature setting
2	Programming keys	Modification of parameters
3	Program line selection keys	Program line selection
4	Display	Display of values
5	Heating circuit operating modes	Selection of operating modes: Auto Automatic Continuous Standby
6	Manual operating key with associated LED	Starts the system in manual mode. Key for use by the SERVICE only.

4. Setting the parameters

4.1 Parameter setting level

a) End user 1.....50 b) Installer 51.....98

To access one of these parameters, follow the instructions provided below:

a) Parameter settings for the end-user

	Buttons	Explanation	Line
1	Prog	Press one of the line selection buttons. This will take you to the programming mode "End user".	
2	Prog	Press the line selection buttons to select the required line.	1 50
3	- + 	Press the + or - button to set the required value. The setting will be stored as soon as you leave the programming mode or change to another line. The end-user parameter list contains all settings that can be made.	
4	Auto	By pressing any of the operating mode buttons, you leave the programming mode "End-user". Note: If no button is pressed for about 8 minutes, the controller will automatically return to the operating mode selected last.	Continuous display

End-user parameters

Parameters	Function	Range	Unit	Resolution	Factory setting
Setting the cl	ock				
1	Time of day	023:59	h / min	1 min	00:00
2	Weekday 1 = Monday	17	Day	1 day	1
3	Date (day, month)	01.0131.1	Day, month	1	_
4	Year	2099	زززز	1	_
Time switch	program 1 (CH)				
5	Pre-selection of weekday 1-7 7-day block 17 Individual days (1 = Monday)	1-7 / 17	Day	1 day	_
6	Switch-on time 1. period	:24:00	h / min	10 min	06:00
7	Switch-off time 1. period	:24:00	h / min	10 min	22:00
8	Switch-on time 2. period	:24:00	h / min	10 min	:
9	Switch-off time 2. period	:24:00	h / min	10 min	:
10	Switch-on time 3. period	:24:00	h / min	10 min	:
11	Switch-off time 3. period	:24:00	h / min	10 min	:
Heating circu	iit			1	
14	Reduced setpoint of room temperature	-	°C	0,5	16
15	Frost protection setpoint of room temperature	-	°C	0,5	10

Parameters	Function	Range	Unit	Resolution	Factory setting
16	Summer / winter changeover temperature	830	°C	0,5	17
17	Slope of heating curve	2,540	°C	0,5	15
18	Actual value of room temperature (QAA50)	050	°C	0,5	-
19	Actual value of outside temperature To reset the attenuated outside temperature to, press the + and - buttons simultaneously for 3 seconds.	-50+50	°C	0,5	-
Standard va	lues				
23	Standard times (line 611) To activate, press the + and - buttons simultaneously for 3 seconds	0/1	-	1	0
Service					
50	Indication of faults	0255	_	1	_

b) Parameter settings for the heating engineer

	Buttons	Explanation	Line
1	Prog	Press both line selection buttons for at least 3 seconds. This will take you to the programming mode "Heating engineer".	51
2	Prog	Press the line selection buttons to select the required line.	51 85
		The installer parameter list contains all settings that can be made.	
3	- +	Press the + or - button to set the required value. The setting will be stored as soon as you leave the programming mode or change to another line.	
4	Auto	By pressing any of the operating mode buttons you leave the programming mode "Heating engineer". Note:	
		If no button is pressed for about 8 minutes, the controller will automatically return to the operating mode selected last.	

Installer parameters

Parameters	Function	Range	Unit	Resolution	Factory setting
51	Output test 0 Control mode according to the operating state 1 All outputs OFF 2 heating circuit pump Q2 3 Mixing valve open Y1 4 Mixing valve closed Y2	04	_	1	0
52	Input test 0 Flow sensor B1 1 Outside sensor B9 2 Room sensor A6 3 Display of input H1	03	_	1	0
54	Display of the nominal room temperature setpoint Nominal setpoint incl. room unit readjustment (QAA 50).	035	°C	0,5	-
55	Actual value of flow temperature Input B1				

Parameters	Function	Range	Unit	Resolution	Factory setting
Service value	es				
58	Attenuated outside temperature	-50+50	°C	1	_
59	Composite outside temperature	-50+50	°C	1	_
63	Flow temperature setpoint	0140	°C	1	_
Heating circ	uit				
64	Parallel displacement of heating curve	-4,5+4,5	°C (K)	0,5	0,0
65	Room influence 0 Inactive 1 Active	0 / 1	_	1	1
67	Switching differential of the room temperature Inactive 0.54.0 Active	4,0	°C (K)	0,5	;-
68	Minimum limitation of flow temperature setpoint	8(Line 69)	°C	1	8
69	Maximum limitation of flow temperature setpoint	(Line 68)95	°C	1	80
70	Type of building construction 0 Heavy 1 Light	0/1	_	1	1
71	Adaptation of heating curve 0 Inactive 1 Active	0/1	_	1	1
73	Maximum forward shift of optimum start control O No forward shift	00:0006:00	hh:mm	10 min	00:00
74	Maximum forward shift of optimum stop control O No forward shift	00:0006:00	hh:mm	10 min	00:00
77	Floor curing dates 0 Off 1 Functional heating 2 Floor curing heating 3 Functional and floor curing heating	03	_	1	0
78	Floor curing dates Day Flow temperature setpoint	032 095	°C	1	_
LPB / systen					
85	LPB device address 0 Standalone 116 Device address (system)	016	-	1	0
86	LPB segment address 0 Heat source segment 114 Heat consumption segments	014	_	1	0
87	Clock mode 0 Autonomous clock 1 System time with remote adjustment 2 (System time with adjustment) 3 System clock (master)	03	_	1	0

Parameters	Function	Range	Unit	Resolution	Factory setting		
90	Winter- / summertime changeover	01.0131.12	Day, month	1	25.03		
91	Summer- / wintertime changeover	01.0131.12	Day, month	1	25.10		
Input signal	Input signal H1						
96	Input H1 0 Changeover of operating mode of all HK and d.h.w. 1 Changeover of operating mode of all HK 2 Minimum flow temperature setpoint (par. 97)	02	_	1	0		
97	Minimum flow temperature setpoint contact H1	895	°C	1	70		
98	Operating action of contact H1 0 N.C. 1 N.O.	0 / 1	-	1	1		

N.B.: all parameters displayed on the RVA46 controller and not present in this documentation are irrelevant for this type of application.

5. Setting the MASTER address and clock

5.1 Setting the address

In order to ensure correct communications, each RVA 46 temperature regulator must be correctly addressed. The input of the device addresses (program line n. 85) is particularly important when a combination of more than one unit is used, or in a system. The addresses of the temperature regulators must be assigned in consecutive order depending on the devices connected (see table 1 and 2). Assigning two identical addresses is not permitted.

5.2 Setting the clock

After the devices' addresses have been set, the installer has to set which of them is to be the main (MASTER) clock. Once the clock of a temperature regulator has been set as MASTER, the clocks of all the other temperature regulators connected to the system will be set as SLAVES.

The day of the week is always shown on the display during normal operation (parameter n. 2).

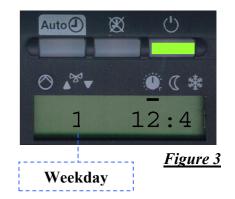


TABLE 1 - RVA 46 MASTER Setting

PARAMETER	DESCRIPTION	Factory setting	Value to be set
85	ADDRESS	0	2
87	Setting of RVA 46 MASTER clock (e.g. first RVA46	0	3
	encountered on the system)		

TABLE 2 - Setting of SLAVE RVA 46 devices (N= 3..4..5...etc. depending on the number of RVA46 regulators in the system)

PARAMETER	DESCRIPTION	Factory setting	Value to be set
85	ADDRESS	0	N (3,4,5,etc.)
87	Setting of SLAVE RVA 46 clocks (e.g. second, third, fourth, etc. RVA 46 units in the system)	0	1

N.B.: if the heating system has a RVA47 regulator for control of a system with cascade-connected boilers, set the clock of the RVA47 as MASTER clock (see instructions supplied with the regulator itself).

The time, day and year must only be set on the MASTER regulator. All the RVA 46 devices connected to the MASTER are updated automatically.

6. Setting the RVA46 parameters for the type of room temperature control used

6.1 With QAA50 digital room units

PARAMETERS TO BE SET:

PARAMETER	DESCRIPTION	Factory setting	Value to be set
96	Input signal	0	0
98	Input signal contact H1	1	1

6.2 With TA room temperature thermostats

PARAMETERS TO BE SET:

PARAMETER	DESCRIPTION	Factory	Value to be
		setting	set
96	Input signal	0	1
98	Input signal contact H1	1	0

6.3 No direct control (without QAA50/TA)

PARAMETERS TO BE SET:

PARAMETER	DESCRIPTION	Factory setting	Value to be set
96	Input signal	0	0
98	Input signal contact H1	1	1

7. Selecting the heating curve

The heating curve (or temperature curve) sets the setpoint value of the heating circuit delivery temperature in relation to the value measured by the outdoor sensor.

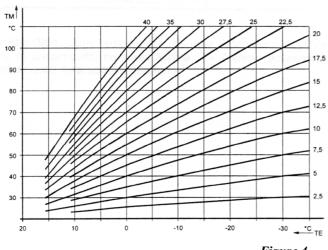


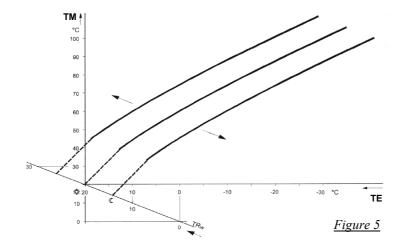
Figure 4

Legend:

TM = Flow temperature

TE = Composite outside temperature

To set the heating curve, proceed as follows:


- > Select program line n° 17.
- Press the \pm -keys to set the curve required (factory setting = 15).
- For *low temperature* heating systems (e.g. underfloor systems), set a low gradient curve.

N.B.: if the QAA50 digital room unit is connected to the system, the RVA 46 regulator will adapt the curve automatically by selecting the one best suited to the room's heat requirement.

7.1 Parallel location of the heating curve

The correct parallel location of the heating curve ensures that the room temperature required will be provided quickly, especially in systems without QAA 50 digital room unit.

The room temperature setpoint can be increased or decreased appropriately by changing the set value.

Legend:

TM = Flow temperature

TE = Composite outside temperature

TRw = Room temperature setpoint

To increase or decrease the setpoint of the heating system delivery temperature, proceed as follows:

- > Select program line n° 64.
- ➤ Press the +/- keys to locate the curve, with the following effects:

Increase in value: the delivery temperature increases; Decrease in value: the delivery temperature decreases;

N.B.: the parallel location of the curve can also be optimised by turning the knob (1) (fig. 2).

8. System delivery temperature minimum and maximum threshold

The minimum and maximum thresholds set the range within which the delivery temperature is permitted to vary, in order to prevent excessively high or low delivery temperatures. To set the thresholds, proceed as follows:

- Select program line n° 68.
- Press the +/- keys to set the delivery temperature value minimum limit.
- > Select program line n° 69.
- Press the +/- keys to set the delivery temperature value maximum limit.

9. Building type

As the outdoor temperature changes, the indoor temperature varies in relation to the building's heat storage capacity. This means that the type of building set directly affects the heating circuit delivery temperature.

To set the type of building, proceed as follows:

- > Select program line n° 70.
- Press the \pm -keys to set the type of building (0/1):
- 0: **heavyweight** buildings (with thick walls or good thermal insulation);
- 1: **lightweight** buildings (with thin walls or poor thermal insulation).

N.B.: with a QAA50 digital room unit connected, in order to optimise heat production in relation to the building type, parameter n° 71 in point 4.1-b (INSTALLER LEVEL) must be active.

10. Setting up the LMU54 boiler electronic circuit board

10.1 Setting the clock

This parameter must be only be modified if the users wishes to set the time shown on the boiler's front panel subordinate to the time of the temperature regulator RVA 46.

The procedure for changing the boiler settings using the control panel is as follows:

- a) press the ▼ ▲ keys on the boiler front panel (fig. 6) simultaneously for about 3 seconds, until parameter H90 appears on the display;
- b) press the **▼** ▲ keys to select parameter H 604;
- c) press the +/. keys to modify the value;
- d) press the (i) key to exit the programming function and save.
- e) once programming is complete, the flashing message E183 appears for about 3 seconds.

Important

The number to be changed is preceded by the code "b0." and is the first to appear when program line n. 604 is selected.

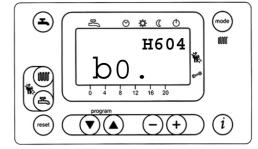


Figure 6

N.B. Never modify the numbers preceded by the codes "b1...b7"

Level	Parameter N.	Description	Factory setting	Value to be set
Н	604	Time setting	0	1

10.2 Setting the system type

The electronic circuit board must be set up for the type of system present.

- ➤ Select program line n° 552 as described in the previous point;
- ➤ Press the +/- keys to set the boiler's water system type (see table).

			Factory setting		Value to be set	
Level	Parameter N.	Description	single purpose (central heating only)	dual purpose	single purpose (central heating only)	dual purpose
Н	552	System setting	35	67	38	70

11. TEST description

Once the regulator has been installed and the relative electrical connections made, the following tests should be performed for rapid identification of malfunctions and/or failures:

- output test (or relay test)
- input test (or sensor test)

11.1. OUTPUT test (or relay test)

- > Select program line n° 51.
- ➤ Press the +/- keys to perform the various stages of the test.

The test sequence is as follows:

- **0** = all contacts activated in accordance with the operating mode;
- 1 = contacts deactivated
- 2 = low-temperature heating circuit pump (Q2) on
- 3 = opening of the mixer valve (Y1) activated;
- 4 = closure of the mixer valve (Y2) activated;

Valve

open (Y1)

Valve

close (Y2)

N.B.: operation of pump Q2 or the mixer valve must be checked directly on the system.

11.2. INPUT test (or sensor test)

- ➤ Select program line n° 52.
- ➤ Press the +/- keys to perform the various stages of the test.

At each stage of the test the relative output is activated and can therefore be checked.

Figure 8

The test sequence is as follows:

- **0** = displays the instantaneous delivery temperature of the delivery sensor SM;
- 1 = not covered;
- 2 = displays the instantaneous temperature measured by the QAA 50 digital room unit (if connected);
- **3** = displays the input status of the contact of the room temperature thermostat TA:
 - **000**: thermostat short-circuited:
 - ---: no thermostat connected or no heat demand (thermostat with open circuit)

12. LED flash functions

Case 1: RVA 46 with QAA50 digital room unit.

In this case, the operating mode of the RVA 46 temperature regulator must be set as "AUTO".

The "AUTO" LED flashes when the demand of the QAA50 digital room unit is different from that of the RVA 46 temperature regulator.

Figure 9

Case 2: RVA 46 with TA room temperature thermostat.

When the room temperature thermostat is not requesting heat, the STAND-BY LED (figure 9) flashes.

<u>Case 3:</u> If STANDBY operating mode has been selected on the boiler's front panel, the LED of the temperature regulator flashes on the STANDBY setting.

N.B.: in a system with more than one RVA 46 device, they will all flash on the STANDBY setting.

13. Description of MANUAL operation key

Manual operation is an operating mode in which all the system's components must be regulated and monitored by hand. The temperature regulator's functions no longer affect the relays. Manual operation is active when the key shown in figure 10 is pressed and the associated LED is on (the key and the LED can

N.B.: the temperature of the heating circuit can be regulated by adjusting the mixer valve by hand.

The temperature setpoint is that set in parameter n. 69 (point 8).

Figure 10

The relay contacts are modified as follows \

only be seen when the lid is opened).

HEATING CIRCUIT PUMP $Q2 \longrightarrow ON$

MIXER VALVE OUTPUTS → OFF (not supplied)

THIS KEY MUST ONLY BE ACTIVATED BY THE SERVICE, TO ALLOW THE SYSTEM TO OPERATE IF THE TEMPERATURE REGULATOR MALFUNCTIONS.

14. Troubleshooting

In case of malfunctions, the message "Er" (Error - Figure 11) appears on the display.

Malfunctions can be displayed as follows:

- > Select program line n° 50.
- > Press the +/- keys to display the malfunctions.

N.B.: the RVA 46 regulator is able to save up to 2 malfunctions, which can be called onto the display in sequence by pressing the +/- keys.

Malfunctions can be displayed in two ways:

- only the error code (e.g., 10 figure 11).
- address and segment combined with the error code (e.g.10.0.01)

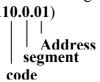


Figure 11

Figura 11.1

Indication of faults

Display	Description of fault	
	No fault	
10	Outside temperature sensor failure	
20	Fault boiler temperature NTC flow sensor	
30	Fault of flow sensor	
50	Fault D.H.W. temperature sensor	
60	Fault room unit QAA73	
61	Fault room unit QAA50	
81	Short-circuit of LPB or no power supply	
82	Address collision on LPB (same address several times)	
86	Short-circuit QAA50	
100	2 clock masters present	
110	Safety or flue gas thermostat tripped	
132	Safety shutdown floor thermostat tripped	
133	No gas (no flame after safety time)	
135	Fan electricity supply failure	
140	Connected unit not compatible (other than OCI 420) or segment number $<>$ 0 (parameter	
	n. $86 \text{ must be} = 0$)	
145	Wrong type of room unit	
150	General BMU fault	
151	Internal fault LMU	
153	The RESET key has been pressed inappropriately	
160	Fan speed threshold not reached	
164	No hydraulic differential pressure switch enabling signal	
183	Saving parameters	

15. Technical data

Nominal voltage	AC 230 V (+/-10%)		
Nominal frequency	50 Hz (/- 6%)		
Power consumption	7 VA max		
Safety class	II to EN 60730		
Degree of protection	IP 40 to EN 60529		
Electromagnetic immunity	EN 50082-2		
Electromagnetic emissions	EN 50081-1		
Maximum temperature admitted:			
Storage	-25+70°C (1K3 to IEC 721-3-1)		
Transport	-25+70°C (2K3 to IEC 721-3-2)		
Operation	0+50°C (3K5 secondo IEC 721-3-3)		
Output relays			
voltage range	AC 24230 V		
nominal current	$50 \text{ mA}2^{\circ}$ (with cosφ > 0.6)		
switch-on peak	10 A max 1 sec.		
fusing	10 A max		
Bus extenction - terminals MD-A6			
$(2 \text{ wire } 0.5 \text{ mm}^2)$	50 m		
Max length - terminals MB-DB			
$(2 \text{ wire } 1.5 \text{ mm}^2)$	500 m		
Perm. sensor cable lengths			
	20		
Ø 0.6 mm	max. 20 m		
1.0 mm ²			
1.5 mm ²	max. 120 m		
Weight of controller	Approx. 0.5 Kg		

In its commitment to constantly improve its products, reserves the right to alter the specifications contained herein at any time and without previous warning.

These Instructions are only meant to provide consumers with use information and under no circumstance should they be construed as a contract with a third party.

Code 922.886.1